Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system.
نویسندگان
چکیده
To implement noninvasive thermometry, we installed a hybrid system consisting of a radiofrequency multiantenna applicator (SIGMA-Eye) for deep hyperthermia (BSD-2000/3D) integrated into the gantry of a 1.5 Tesla magnetic resonance (MR) tomograph Symphony. This system can record MR data during radiofrequency heating and is suitable for application and evaluation of methods for MR thermography. In 15 patients with preirradiated pelvic rectal recurrences, we acquired phase data sets (25 slices) every 10 to 15 minutes over the treatment time (60-90 minutes) using gradient echo sequences (echo time = 20 ms), transformed the phase differences to MR temperatures, and fused the color-coded MR-temperature distributions with anatomic T1-weighted MR data sets. We could generate one complete series of MR data sets per patient with satisfactory quality for further analysis. In fat, muscle, water bolus, prostate, bladder, and tumor, we delineated regions of interest (ROI), used the fat ROI for drift correction by transforming these regions to a phase shift zero, and evaluated the MR-temperature frequency distributions. Mean MR temperatures (T(MR)), maximum T(MR), full width half maximum (FWHM), and other descriptors of tumors and normal tissues were noninvasively derived and their dependencies outlined. In 8 of 15 patients, direct temperature measurements in reference points were available. We correlated the tumor MR temperatures with direct measurements, clinical response, and tumor features (volume and location), and found reasonable trends and correlations. Therefore, the mean T(MR) of the tumor might be useful as a variable to evaluate the quality and effectivity of heat treatments, and consequently as optimization variable. Feasibility of noninvasive MR thermography for regional hyperthermia has been shown and should be further investigated.
منابع مشابه
Fabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملCardiac magnetic resonance adenosine perfusion at 3 Tesla is superior to 1.5 Tesla for detection of relevant coronary artery stenosis
Background Cardiac magnetic resonance imaging (CMR) including adenosine perfusion and late gadolinium enhancement (LGE) at 1.5 Tesla (T) has been established for noninvasive detection of relevant coronary artery disease (CAD). However, little is known about the potential advantages of 3.0-T to detect CAD. The aim of our prospective study was to compare a compiled clinical routine CMR protocol p...
متن کاملFabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...
متن کاملCalculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy
Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...
متن کاملEffect of brain magnetic resonance imaging on body core temperature in sedated infants and children.
BACKGROUND Children undergoing magnetic resonance imaging (MRI) under sedation are at risk of hypo- or hyperthermia. The effect of brain MRI at differing magnetic field strengths on body core temperature in sedated infants and young children has not been reported previously. METHODS Two groups of 38 infants and children (aged 1 month to 6 yr 5 months) underwent brain MRI for different indicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 13 شماره
صفحات -
تاریخ انتشار 2005